Skip to main content The text to SQL node allows you to generate SQL queries from natural language.
The text to SQL node allows you to generate SQL queries from natural language.
- Natural language query:  The query in natural language
- Schema: The schema you want the SQL query to follow
Node Parameters
On the face of the node:
- SQL Database: Choose the SQL database the data is in. The available options are: MySQL, PostgreSQL, Snowflake and SQLite3. The default database is MySQL.
In the gear:
- LLM model: The llm model you want to use to generate the query. The available options are: o3-mini, o1, o1-mini, o1-preview, chatgpt-4o-latest, gpt-4o, gpt-4o-2024-08-06, gpt-4o-mini, gpt-4-turbo, gpt-4-turbo-2024-04-09, gpt-4 and gpt-3.5-turbo. The default value is gpt-4o.
Node Outputs
- SQL Query: The SQL query generated by the llm
- Type: Text
- Example usage: {{nl_to_sql_0.sql_query}}
 
Example
The below example is a pipeline which uses the text to SQL node to generate a SQL query from natural language.
- Text Node: Stores the natural language query
- Text to SQL Node: Generates the SQL query
- SQL Database: MySQL
- Natural language query: {{input_0.text}}
- Schema: CREATE TABLE Person (  id INT AUTO_INCREMENT PRIMARY KEY,  name VARCHAR(100) NOT NULL,  phone_number VARCHAR(20),  email VARCHAR(100) UNIQUE,  created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP );
 
- Output Node: Outputs the SQL query
- Output: {{nl_to_sql_0.sql_query}}
 
 xt to
xt to